Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Caspian J Intern Med ; 12(Suppl 2): S451-S459, 2021.
Article in English | MEDLINE | ID: covidwho-1404248

ABSTRACT

BACKGROUND: As a global health pandemic, the novel severe acute respiratory syndrome-coronavirus 2 (SARS- CoV2) outbreak began in December 2019 which rapidly spread to more than 200 countries. Respiratory complications and fever are the most obvious symptoms. Sometimes the neurological features are superimposed on the main disease and complicate patient's status. CASE PRESENTATION: We describe 6 patients with COVID-19 and concomitant quadriparesia who underwent electrodiagnosis using EMG/NCS and results indicated 3 axonal variants of Guillain-Barré syndrome (GBS), including; 2 cases AMAN (acute motor axonal neuropathy), 1 case AMSAN (acute motor and sensory axonal neuropathy), three myopathies, including one combination of CIN/CIM (critical illness neuropathy/critical illness myopathy), one CIM and one acute polymyositis in these cases. CONCLUSION: Early diagnosis of the neuromuscular disorders of coronavirus could help for correct planning in the treatment of COVID-19 patients. Since GBS and inflammatory myopathies have an autoimmune basis, the immunotherapies such as IVIG, steroids, plasma exchange and other novel treatments as hemoperfusion can promise better and faster recovery in respiratory function and neuromuscular activity among COVID-19 patients who have musculature paralysis concomitantly. However, all these treatments are challenging and further clinical trials should be done to confirm the efficacy and safety of mentioned therapies.

2.
Neurol Sci ; 42(12): 4893-4898, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1391890

ABSTRACT

INTRODUCTION: Neurological complications of SARS-CoV-2 disease have received growing attention, but only few studies have described to date clinical and neurophysiological findings in COVID patients during their stay in intensive care units (ICUs). Here, we neurophysiologically assessed the presence of either critical illness neuropathy (CIP) or myopathy (CIM) in ICU patients. MATERIALS AND METHODS: Patients underwent a neurophysiological assessment, including bilateral examination of the median, ulnar, deep peroneal and tibial motor nerves and of the median, ulnar, radial and sural sensory nerves. Needle electromyography (EMG) was performed for both distal and proximal muscles of the lower and upper limbs. In order to differentiate CIP from CIM, Direct Muscle Stimulation (DMS) was applied either to the deltoid or tibialis anterior muscles. Peak to peak amplitudes and onset latencies of the responses evoked by DMS (DMSamp, DMSlat) or by motor nerve stimulation (MNSamp, MNSlat) were compared. The ratio MNSamp to DMSamp (NMR) and the MNSlat to DMSlat difference (NMD: MNSlat - DMSlat) were also evaluated. RESULTS: Nerve conduction studies showed a sensory-motor polyneuropathy with axonal neurogenic pattern, as confirmed by needle EMG. Both MNSamp and NMR were significantly reduced when compared to controls (p < 0.0001), whereas MNSlat and NMD were markedly increased (p = 0.0049). CONCLUSIONS: We have described COVID patients in the ICU with critical illness neuropathy (CIP). COVID-related CIP could have implications for the functional recovery and rehabilitation strategies.


Subject(s)
COVID-19 , Muscular Diseases , Polyneuropathies , Critical Illness , Electromyography , Humans , Neural Conduction , Polyneuropathies/complications , SARS-CoV-2
3.
Brain Commun ; 3(3): fcab135, 2021.
Article in English | MEDLINE | ID: covidwho-1360337

ABSTRACT

A variety of neuropsychiatric complications has been described in association with COVID-19 infection. Large scale studies presenting a wider picture of these complications and their relative frequency are lacking. The objective of our study was to describe the spectrum of neurological and psychiatric complications in patients with COVID-19 seen in a multidisciplinary hospital centre over 6 months. We conducted a retrospective, observational study of all patients showing neurological or psychiatric symptoms in the context of COVID-19 seen in the medical and university neuroscience department of Assistance Publique Hopitaux de Paris-Sorbonne University. We collected demographic data, comorbidities, symptoms and severity of COVID-19 infection, neurological and psychiatric symptoms, neurological and psychiatric examination data and, when available, results from CSF analysis, MRI, EEG and EMG. A total of 249 COVID-19 patients with a de novo neurological or psychiatric manifestation were included in the database and 245 were included in the final analyses. One-hundred fourteen patients (47%) were admitted to the intensive care unit and 10 (4%) died. The most frequent neuropsychiatric complications diagnosed were encephalopathy (43%), critical illness polyneuropathy and myopathy (26%), isolated psychiatric disturbance (18%) and cerebrovascular disorders (16%). No patients showed CSF evidence of SARS-CoV-2. Encephalopathy was associated with older age and higher risk of death. Critical illness neuromyopathy was associated with an extended stay in the intensive care unit. The majority of these neuropsychiatric complications could be imputed to critical illness, intensive care and systemic inflammation, which contrasts with the paucity of more direct SARS-CoV-2-related complications or post-infection disorders.

4.
Clin Neurophysiol ; 132(7): 1733-1740, 2021 07.
Article in English | MEDLINE | ID: covidwho-1163547

ABSTRACT

OBJECTIVE: The aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW). METHODS: An observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients. RESULTS: 111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes. CONCLUSIONS: CIN/CIM was more prevalent among COVID-19 ICU patients with severe illness. SIGNIFICANCE: COVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM.


Subject(s)
COVID-19/complications , Muscular Diseases/etiology , Polyneuropathies/etiology , Aged , Biomarkers/blood , COVID-19/physiopathology , Critical Illness , Female , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Muscle Weakness/etiology , Muscular Diseases/blood , Muscular Diseases/physiopathology , Polyneuropathies/blood , Polyneuropathies/physiopathology , Prospective Studies , Respiration, Artificial/statistics & numerical data , Thromboembolism/etiology
5.
J Appl Physiol (1985) ; 130(5): 1479-1489, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1140359

ABSTRACT

Critical illness-associated weakness (CIAW) is an umbrella term used to describe a group of neuromuscular disorders caused by severe illness. It can be subdivided into three major classifications based on the component of the neuromuscular system (i.e. peripheral nerves or skeletal muscle or both) that are affected. This includes critical illness polyneuropathy (CIP), critical illness myopathy (CIM), and an overlap syndrome, critical illness polyneuromyopathy (CIPNM). It is a common complication observed in people with critical illness requiring intensive care unit (ICU) admission. Given CIAW is found in individuals experiencing grave illness, it can be challenging to study from a practical standpoint. However, over the past 2 decades, many insights into the pathophysiology of this condition have been made. Results from studies in both humans and animal models have found that a profound systemic inflammatory response and factors related to bioenergetic failure as well as microvascular, metabolic, and electrophysiological alterations underlie the development of CIAW. Current management strategies focus on early mobilization, achieving euglycemia, and nutritional optimization. Other interventions lack sufficient evidence, mainly due to a dearth of large trials. The goal of this Physiology in Medicine article is to highlight important aspects of the pathophysiology of these enigmatic conditions. It is hoped that improved understanding of the mechanisms underlying these disorders will lead to further study and new investigations for novel pharmacologic, nutritional, and exercise-based interventions to optimize patient outcomes.


Subject(s)
Muscular Diseases , Neuromuscular Diseases , Polyneuropathies , Critical Care , Critical Illness , Humans , Intensive Care Units , Muscular Diseases/therapy , Polyneuropathies/therapy
6.
Neurol Res Pract ; 2: 51, 2020.
Article in English | MEDLINE | ID: covidwho-954826

ABSTRACT

Infection with the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to a previously unknown clinical picture, which is known as COVID-19 (COrona VIrus Disease-2019) and was first described in the Hubei region of China. The SARS-CoV-2 pandemic has implications for all areas of medicine. It directly and indirectly affects the care of neurological diseases. SARS-CoV-2 infection may be associated with an increased incidence of neurological manifestations such as encephalopathy and encephalomyelitis, ischemic stroke and intracerebral hemorrhage, anosmia and neuromuscular diseases. In October 2020, the German Society of Neurology (DGN, Deutsche Gesellschaft für Neurologie) published the first guideline on the neurological manifestations of the new infection. This S1 guideline provides guidance for the care of patients with SARS-CoV-2 infection regarding neurological manifestations, patients with neurological disease with and without SARS-CoV-2 infection, and for the protection of healthcare workers. This is an abbreviated version of the guideline issued by the German Neurological society and published in the Guideline repository of the AWMF (Working Group of Scientific Medical Societies; Arbeitsgemeinschaft wissenschaftlicher Medizinischer Fachgesellschaften).

SELECTION OF CITATIONS
SEARCH DETAIL